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Abstract-The conjugate heat transfer across a thin horizontal wall separating two fluid-saturated porous 
media at different temperatures is investigated numerically and asymptotically. The solution for large 
Rayleigh numbers is shown to depend on two nondimensional parameters: c(, the ratio of the thermal 
resistance of the boundary layer in the hot medium to the thermal resistance of the wall, and 8, the ratio 
of the thermal resistances of the boundary layers in the two media. The overall Nusselt number is an 
increasing function of G( tending to zero for c( + 0, and to a finite maximum value for a --f co. 0 1997 

Elsevier Science Ltd. 

1. INTRODUCTION 

Natural convection heat transfer in fluid-saturated 
porous media is of interest to a host of applications, 
ranging from geophysical problems to thermal insu- 
lation, chemical reactors or underground spread of 
pollutants (see Gebhart et al. [l] and Nield and Bejan 
[2] for recent reviews). Conjugate effects, whereby 
convection in the porous media is coupled to con- 
duction in the finite-thickness solids bounding these 
media, are involved in many of these applications, and 
their realistic modelling often poses problems some- 
what more complicated than the classic idealizations 
of a solid with predetermined temperature or heat 
fux. A theoretical analysis of the basic heat transfer 
mechanisms for a vertical conducting plate separating 
two porous media kept at different temperatures was 
presented recently [3], following a similar analysis by 
Treviiio et al. [4] for Newtonian fluids. In these works, 
the effects of longitudinal and transverse conduction 
in the solid were studied by means of asymptotic and 
numerical methods for large Rayleigh number flows, 
the solutions were classified in terms of three main 
non-dimensional parameters, and the dependence of 
the overall rate of heat transfer on the thermal resist- 
ances of the solid and the boundary layers in the fluids 
was determined. In this paper the same techniques are 
appiied to the case of a horizontal wall separating two 
porous media. The physical mechanisms retained in 
the analysis, which corresponds to the asymptotic 
limit of large Rayleigh numbers, are heat conduction 
in the solid, and conduction and convection in the 
porous media. Darcy’s law and the Boussinesq 
approximation are used. 

2. FORMULATION AND ASYMPTOTIC ANALYSIS 

Consider a horizontal heat-conducting strip of 
width 2L and thickness h in an otherwise adiabatic 
wall separating two fluid-saturated porous media at 
temperatures T,, and T,, < T,,. Due to the heat 
conduction across the strip, temperature differences 
of order AT = T,, - T,, appear in the porous media 
that induce natural convection flows. An order of 
magnitude analysis (e.g. Gebhart et al. [l]) shows that, 
for large values of the Rayleigh number, these motions 
occur in boundary layers of thickness L/Raf ” on the 
sides of the strip, where the characteristic velocity is 
Raft3 q/L. Here Ra, = yfi,ATK,L/a,v, are the Rayleigh 
numbers, with i = 1, 2 denoting the hot and cold 
media, respectively, g is the acceleration of gravity, 
and K,, M,, pi and vi are the permeabilities and thermal 
diffusivities of the media, and the thermal expansion 
coefficients and kinematic viscosities of the fluids. 

It should be noticed here that the how in both 
boundary layers is directed toward the centre of the 
strip when the hot medium is below the wall, as sket- 
ched by the solid arrows in Fig. 1, leading to two 
vertical plumes not represented in Fig. 1. A standard 
order of magnitude analysis shows that the thickness 
and vertical velocity of the plumes at a distance ]y] 
from the wall are of orders L(y/L)2’3/Ra~!9 and 
Ka~‘9(a,lL)l(lyll~)“3, respectively, and, therefore, 
that the entrainment of these plumes induces velocities 
of order R&‘a,/L at distances of the wall of order L. 
At the asymptotic limit Ra, -+ co considered in this 
work, such ve!ocities are small compared to the vel- 
ocities in the boundary layers, and therefore the pras- 
ence of the plumes does not alter the flow in the 
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NOMENCLATURE 

thickness of the strip Greek symbols 
thermal conductivity of medium i 2 heat conduction parameter, defined 
thermal conductivity of solid in equation (14) 
half-width of the strip I, equivalent thermal diffusivity of 
overall Nusselt number defined in medium i 
equation (15) B ratio of boundary layer thermal 
overall heat flux from medium i to resistances, defined in equation (14) 
wall c plate aspect ratio 
Rayleigh number of medium i 0, non-dimensional temperature of 
temperature of medium i far from medium i, defined in equation (I) 
plate 0% non-dimensional temperature of 
horizontal and vertical Cartesian plate, defined in equation (2) 
coordinates. *f stream function for medium i 

boundary layers in first approximation. The correc- 
tion, however, is of order Ru,~‘~, which may be impor- 
tant for some Rayleigh numbers of practical interest. 

Appropriate non-dimensional variables to describe 
the flows in the boundary layers are 

whereas, in the solid. 

x* is the horizontal distance from one of the edges of 
the strip, y* is the vertical distance measured from the 

middle of the strip toward the hot medium, and $7 
are the stream functions defined in the usual way. 
Using the Boussinesq approximation, Darcy’s law and 
the energy conservation equations are 

and 

(4) 

in the boundary layers. Equation (3) is obtained by 
taking they-derivative of the horizontal component of 
Darcy’s law, u, = C?$,!?JJ, = - cp,/?,x, with the reduced 
pressure satisfying the hydrostatic balance 
c’p,j?y, = + 0, in the vertical direction. The upper signs 
in these equations correspond to having the hot med- 
ium below the wall, in which case the motion is from 
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Fig. I. Definition sketch. Solid arrows correspond to a hot medium below the wall and dashed arrows to 
a hot medium above the wall. Only half of the symmetric flow is depicted. 



Conjugate natural convection heat transfer 3159 

the edges toward the centre of the strip, as mentioned 
before. The lower signs correspond to having the hot 
medium above the wall, with the motion from the 
centre toward the edges (dashed arrows in Fig. 1). 
The non-dimensional heat conduction equation in the 
solid strip is 

a*e, a20, c*,,;+,=o ay (5) 

and the boundary conditions for equations (3)(5) are 

*I =0 
0, (x, 0) = l-&(x, ;, 

i 

aty, =0 (y=$ 

ao, jaJj, = - xao,jay 

(C(8) 

fi2 =o 
02(x,0) =0,(X,-;) sty, =0 (y= -i) 

ae,jay2 = -tigae,jay 

(9))(11) 

%_ 
+, - 

8, = 0 for y, + cc 

do 
“=O atx=0,2 
aJ>, 

(12) 

plus appropriate conditions on the singularities of the 
boundary layer solutions at the edges. Thus, for x << 1, 
U, = O(X~‘.~) and ,vc = 0(x2”) when the hot medium 
is below the wall [5, 61, and U, = 0(x-‘:‘) and 
y, = O(.X?) when it is above [7, 81, where y, is the 
non-dimensional boundary layer thickness. The non- 
dimensional parameters appearing in the previous 
equations are 

k,L 1 
cr=k,hz /+($J” s=: (14) 

where k, and k, are the thermal conductivities of the 
porous media and the solid wall. Here c1 is the ratio of 
the thermal resistance of the boundary layer in the hot 
medium to the thermal resistance of the wall, /I is the 
ratio of the thermal resistances of the boundary layers 
in the cold and hot media, and E is the aspect ratio of 
the strip, which is typically small. 

The heat transport across the strip is measured by 
the overall Nusselt number : 

where 

dx* 
v. = ,,,* 

k, L ar, 

=-?’ (-> L 0 aY* 
dx*. 

I.f = -h/z 

This completes the formulation of the problem. In the 

remainder of this section, the asymptotic forms of 
the solution for large and small values of tl will be 
described. 

At the limit c( + co, corresponding to very small 
thermal resistance of the wall compared to that of the 
boundary layers, equations (8) and (11) imply that 
the nondimensional temperature difference between 
the two faces of the wall is of order l/cc << 1. Neglecting 
such small differences in (7) and (lo), the problem has 
a solution with uniform wall temperature (0, = &, 
say) at leading order, of the form 

$, =(1 -e,)‘*3Y(x,(l -00)‘!3y,) 

0, =(1 -Q,)@(x,(l -Qo)“3Y1) (16) 

and 

$2 = 0$3Y(x, #;3y*) o2 = fI”O(X, e::3y2) (17) 

where Y(x, Y) and 0(x, Y) satisfy equations (3), (4) 
and (12) with the boundary conditions Y = 0 - 1 = 0 
at Y = 0. The solutions of these problems have been 
obtained elsewhere. When the hot medium is below 
the plate the solution is the adaptation of the self- 
similar solution of Stewartson to porous media [5]: 
Y = x’j3F(q), 0 = G(q), with q = Y/x’!’ and 

F”-&G’ = 0 G”+;GG’ = 0 (18) 

F(0) = G(O)- 1 = 0 F’(co) = G(co) = 0 

(primes denoting derivatives with respect to the 
self-similar variable q), for which n, = 
-J:,(aojaq,=, dx = - 3G’(O) z 1.2897. When the 
hot medium is above the plate the problem has a self- 
similar solution of a different type [8], for which 
n, E -J~(a@/aY),=,dx z 1.024. Finally, f3,, is 
obtained by equating the overall non-dimensional 
heat transfer from medium 1 to the plate and from 
the plate to medium 2, equal to (1 - tQ4’3n, and 
&:‘n,/fi, respectively [see equations (16) and (17)]. 
This condition yields 

(19) 

and the overall Nusselt number is 

Nu = (1 -B,)4’3n, Rat!’ (20) 

At the opposite limit, c( + 0, the thermal resistance 
of the wall is much larger than that of the boundary 
layers, and most of the temperature drop occurs across 
the wall, leading to 0, = y+f in first approximation. 
The flow in the boundary layers can be found by 
solving equations (3) (4), (6), (8), (9), (11) and (12) 
with a&jay = 1 in the right-hand sides of equations 
(8) and (11). The solutions are 

$, = &“?(x, U’,‘4 y,) 0, = cP%(x, Py,) (21) 

and 

$2 = (ap)“4Y(x,(ap)‘r4y2) 

f& = (a/?)3’“@(x,(a/l)“4yz) (22) 



3160 F. J. HICUERA 

where 9(x, Y) and 6(x, Y) satisfy equations (3), (4) 
and (12) with the boundary conditions 
9 = ad/r! Y+ 1 = 0 at Y = 0. Also in this case, a self- 
similar solution, of the form 9 = x1,‘&)), 
6 Z x’:‘G(rj). rj = y/.x’:‘, exists when the hot medium 
is below the wall [6], giving @x,0) z 1.1643s”’ and 
m, = s:, d(x, 0) dx z 0.7762, whereas when the hot 
medium is above the wall the numerical solution of 
the problem [8], which is not self-similar, gives 
m, = $:, &x, 0) dx z 1.2024. Knowing the small 
values of 0, and 0, at the faces of the wall, equation 
(5) with conditions (I), (10) and (13) determines 
O,V(.r,~) to a better approximation. For i: CC I. longi- 
tudinal conduction can be neglected in equation (5) 
and the solution is 

leading to an overall Nusselt number 

Nu = c&a;‘“{1 -m,&‘(l +fi’:“)). (24) 

3. NUMERICAL RESULTS AND DISCUSSION 

For c( = 0( 1), problem (3)-( 13) was solved numeri- 
cally, takings = 0 in equation (5). The overall Nusselt 
numbers [equation (15)] computed from these 
numerical solutions for the cases of hot medium below 
and above the wall are given in Figs. 2 and 3, respec- 
tively, as functions of c( for b = 0.5 and 1. Also plotted 
in Figs. 2 and 3 are the asymptotic results (20) and 

(24). 
The heat transfer is somewhat higher when the hot 
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medium is below the wall than when it is above. This 
can be traced to the stronger divergence of the heat 
flux at the edges: CHI,/ZJJ, = 0(x-‘:‘) for .Y c 1 in the 
first case, compared to %,/&J, = 0(.x- “) in the second 
case. 

In both cases the Nusselt number increases with a. 
This is because a larger fraction of the total tem- 
perature drop from r,, to T2_, occurs in the boundary 
layers as the thermal resistance of the solid decreases, 
leading to larger heat fluxes. The maximum Nusselt 
number is attained for x + W. being given by equation 
(20). In this limit the temperature of the solid also 
becomes uniform along the strip, owing to the fact 
that the two boundary layers grow at the same pace 
and from the same section of the strip, and thus longi- 
tudinal conduction in the solid plays no role in the 
present horizontal strip configuration (compare with 
the analysis of ref. 3 for a vertical wall). The tem- 
perature of the solid would depend on .Y for x + oc if 
the wall were inclined at an angle of order Ram' '. and 
the longitudinal conduction in the solid would then 
become important for c1 = O(c ‘) s 1. making the 
temperature uniform and reducing the Nusselt 
number. Finally. for inclinations of the wall to the 
horizontal much larger than Rum"', the flow in the 
boundary layers would no longer be driven by the 
pressure gradient but by the component of the buoy- 
ancy parallel to the plate, and the results of ref. [3] 
become applicable by replacing ,q by its component 
parallel to the wall. 

The Nusselt number defined in equation (15) 
increases as p decreases. For b--i 0 the thermal resist- 

I 

Fig. 2. Overall Nusselt number as a function of u for fi = 0.5 and 1 for the case of a hot medium below the 
wall: results from the numerical integration of equations (3)-(13) (solid) and the asymptotic expressions 

(20) and (24) (dashed). 
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Fig. 3. Overall Nusselt number as a function of a: for p = 0.5 and 1 for the case of a hot medium above the 
wall : results from the numerical integration of equations (3)-( 13) (solid) and the asymptotic expressions 

(20) and (24) (dashed). 
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ante of the boundary layer in the cold medium 3, 
becomes negligible, and the non-dimensional tem- 
perature of the solid surface facing that medium tends 
to zero. Analogously, the thermal resistance of the 4, 
boundary layer in the hot medium becomes negligible, 
and the non-dimensional temperature of the solid sur- 
face facing that medium tends to 1 for fl-+ co. It is 
worth noticing that the results for values of b smaller 

5, 

and larger than the unity can be easily related to each 
other using the invariance properties of problem (3)- 
(13). Thus, as can be easily verified, if 6, - 
Nz~/Raf’~ =f(cc) for a certain /I = /J,, the Nusselt num- 
ber for b = l/p1 is Nu/Rai’3 = /I&CL/P,). 
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